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Solution of a one-dimensional stochastic model with branching and coagulation reactions
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We solve a one-dimensional stochastic model of interacting particles on a chain. Particles can have branch-
ing and coagulation reactions; they can also appear on an empty site and disappear spontaneously. This model,
which can be viewed as an epidemic model and/or as a generalization of thevotermodel, is treated analytically
beyond theconventionalsolvable situations. With help of a suitably chosenstring function, which is simply
related to the density and the noninstantaneous two-point correlation functions of the particles, exact expres-
sions of the density and of the noninstantaneous two-point correlation functions, as well as the relaxation
spectrum are obtained on a finite and periodic lattice.
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Due to their important role in the description of classic
interacting many-particle nonequilibrium systems, reacti
diffusion ~RD! models have been extensively investigated
the last decade@1,2#. In lower dimensions, they provide re
evant examples ofstrongly correlatedsystems which canno
be correctly described by mean-field-like approaches. In
sense satisfying comprehension of RD models in lower
mensions would requireexact solutions, which are scarce
even in one spatial dimension. In some cases, however,
tain RD models are known to be solvable. These cases
essentially be classified into four categories:~i! models for
which the equations of motion of correlation functions a
closed@3#; ~ii ! the free-fermionmodels@4# ~or systems which
can be mapped onto the latter, see Refs.@2,5#!; some other
~one-dimensional! RD models can be solved by the~iii ! Ma-
trix Ansatzmethod@6#, and some others by~iv! the interpar-
ticle distribution function~IPDF! method@7–9#, first intro-
duced for the study of the diffusion-coagulation model~and
its variants!. It has also to be mentioned that the solutions
various one-dimensional RD models have been obtai
from the diffusion-coagulation models viasimilarity trans-
formations@2,10#. It has been established that the latter so
able situations correspond tofree-fermionsystems@2#.

The purpose of this Rapid Communication is to presen
generalization of the IPDF method and to apply this te
nique to solve a one-dimensional stochastic model whic
not solvable usingconventionalmethods. The model unde
consideration exhibits amassivespectrum, implying anex-
ponential approachtowards the steady state. The expre
sions of the density and noninstantaneous correlation fu
tions are determined.

Consider a periodic lattice ofL sites on which~classical!
particles interact. Each site is either empty~denoted by the
symbolB) or occupied by a particle at most, say, of spec
A ~hard-core interaction!. When a particle and a vacancy a
adjacent to each other, abranching reactioncan take place
and the particleA can give birth to an offspring (AB→AA
and BA→AA) with rate G10

115G01
11; another possible reac

tion is the death of the particle (AB→BB and BA
→BB) with rate G10

005G01
00. When two particles are adja

cent, they cancoagulate(AA→AB andAA→BA) with rate
G11

105G11
01. In addition, when two vacancies are adjacent

particle can appear~birth process,BB→AB and BB
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→BA) with rateG00
105G00

01. The system described above ca
be viewed as anepidemic model, where particles can spon
taneously appear or disappear, have an offspring, and co
late. It can also be viewed as a generalization of thevoter
model @2#, where the presence or absence of a particle
associated with an opinion~yes or no! and each site is asso
ciated with a human being. According to the dynamics of
model, each individual changes his opinion at a rate prop
tional to the opinion of his neighbors.

A particle ~vacancy! at each of theL-lattice sites corre-
sponding to spin down~up!, the master equation of th
model, can be rewritten as an imaginary-time Schro¨dinger
equation for aquantum spin-chainproblem: ]/]tuP(t)&
52HuP(t)&, where uP(t)&5($n%P($n%,t)u$n%& describes
the state of the system at timet ~the sum runs over the 2L

configurations! and H is the stochastic Hamiltonian~non-
Hermitian! expressed in a spin-1

2 representation asH
5( j 51

L H j , j 11, with

2H j , j 115G10
00$~12nj 11!~s j

12nj !

1~12nj !~s j 11
1 2nj 11!%1G00

10$~12nj 11!

3~s j
21nj21!1~12nj !~s j 11

2 1nj 1121!%

1G11
10$nj~s j 11

1 2nj 11!1nj 11~s j
12nj !%

1G10
11$nj 11~s j

21nj21!1nj~s j 11
2 1nj 1121!%,

~1!

where thes6 are the usual Pauli matrices andnj[
1
2 (1

2s j
z) is the density operator at sitej. We also define the

‘‘left vacuum’’ ^x̃u[($n%^$n%u. The probability conservation
yields ^x̃uH50.

For the model under consideration, the equation of evo
tion of the density, from an initial stateuP(0)&, is therefore

d

dt
^nj&52^x̃unj~H j 21,j1H j , j 11!e2HtuP~0!&

52A1B~^nj 11&1^nj 21&!22C^nj&

1D~^njnj 11&1^njnj 21&!, ~2!
©2001 The American Physical Society01-1



s

to
n
-

de

e

r

th

n-
n

-

ere

rs

d

i-

RAPID COMMUNICATIONS

MAURO MOBILIA AND PIERRE-ANTOINE BARES PHYSICAL REVIEW E64 045101~R!
where A[G00
10, B[G10

112G00
10, C[G10

001G00
10, and D[G10

00

1G00
102(G10

111G11
10). When D50 and BÞC, for a transla-

tionally invariant system with initial density of particle
^nj (0)&5r(0), thesolution of Eq.~2! simply readŝ nj (t)&
5A/$C2B%1@r(0)2(A/$C2B%)#e22(C2B)t. However,
when DÞ0, it is clear from Eq.~2! that the equation of
motion of the correlation functions of the model give rise
an open hierarchy@3,2#, which is not, in general, solvable. I
addition, Hamiltonian~1! is not quadratic and cannot, in gen
eral ~excepted whenG10

115G10
00 and G11

105G00
10, see Ref.@2#

for a complete classification offree-fermionsystems!, be
casted into a free-fermion form. Furthermore, this mo
cannot be solved by thetraditional IPDF method, which is
not applicable@7–9# in the presence of the processesAB
→BB; BA→BB and in the absence of processesAB
→BA; BA→AB ~the latter should occur with the sam
rate as the coagulation rates@7–9#!.

To our knowledge, noexact resultshave been obtained fo
the model under investigation beyond theD50 and free-
fermioncases. In order to obtain the exact expression of
density beyond the latterconventional cases, we generalize
the IPDF method introducing the followingstring function
(L>y>x>1):

Sx,y~ t ![^~a2bnx!~a2bnx11! . . . ~a2bny21!&~ t !,
~3!

wherea and b are nonvanishing numbers. Whena5b51,
Sx,y(t) is theempty interval functionused in thetraditional
IPDF method@7–9#. The idea to solve the model under co
sideration here~with certain restrictions for the reactio
rates! is to choosesuitablea andb in order to have a closed
equation of evolution forSx,y(t). This is achieved by impos
ing the following ratio betweena andb:

b

a
511

G11
10

G00
10

.1 ~4!

and for the following reaction rates:

G11
105G11

01.0; 2G00
1052G00

01>G10
115G01

11>0;

and G10
005G01

005
G11

10~2G00
102G10

11!

G00
10

>0. ~5!
nc
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l

e

According to Eq.~4! and with rates~5!, for the model under
consideration on a periodic lattice ofL sites, we have (1
<x<y<L):

d

dt
Sx,y~ t !5

a

2
„Sx11,y~ t !1Sx,y21~ t !…1

b

2
„Sx21,y~ t !

1Sx,y11~ t !…2gSx,y~ t !2~y2x!dSx,y~ t !

~1<x,y,L !,

d

dt
Sx,x1L~ t !52LdSx,x1L~ t !, ~6!

Sx,x~ t !51,

where a[2(aC2bA), b[22D/b, g[2(B1C)2d, and
d[(2b/a)A.0. The prescriptionSx,x(t)51 is obtained re-
quiring thatSx,x11(t)5a2b^nx(t)& and using Eq.~2!.

The subcaseG10
115G00

10 implies a5b5B5D50 and we
recover (CÞ0) ^nx(t)&5@a2Sx,x11(t)#/b5A/C
1(^nx(0)&2A/C)e22Ct.

Hereafter we focus on the more general situation wh
Eqs.~5! are fulfilled with G10

11ÞG00
10, and thusaÞ0,bÞ0 .

It is useful to consider theauxiliary function Rx,y(t)
[mx2ySx,y(t), where we introduce the complex numbe
m[2 i sgn(a)ua/bu1/2 andq[ i uabu1/2Þ0. Notice that, be-
cause of Eqs.~5!, 0,uqu/d,1/2. With help of Eqs.~5!, we
obtain the equation of motion ofRx,y(t),

d

dt
Rx,y~ t !5

q

2 (
e561

$Rx1e,y~ t !1Rx,y1e~ t !%2gRx,y~ t !

2~y2x!dRx,y~ t !; ~1<x,y,L !,

d

dt
Rx,x1L~ t !52LdRx,x1L~ t !, ~7!

Rx,x~ t !51.

The stationary solution of Eq.~7! is obtained with the Ansatz
Rx,y(`)5ÃLJy2x1v(2q/d)1B̃LYy2x1v(2q/d), where
Jn(z) and Yn(z) are the usual Bessel functions of first an
second kind, respectively, andÃL andB̃L are constants to be
determined. Inserting the expression ofRx,y(`) into Eq.~7!,
we obtainv5g/d. Taking into account the boundary cond
tions Rx,x(t)5Rx,x(`)51 andRx,x1L(`)50, we get
ÃL52
YL1g/d~2q/d!

JL1g/d~2q/d!Yg/d~2q/d!2YL1g/d~2q/d!Jg/d~2q/d!
, ~8!
ity

ads
B̃L5
JL1g/d~2q/d!

JL1g/d~2q/d!Yg/d~2q/d!2YL1g/d~2q/d!Jg/d~2q/d!
,

~9!

which provides the stationary expression for the string fu
tion:
-

Sx,y~`!5my2x@ÃLJy2x2g/d~2q/d!1B̃LYy2x2g/d~2q/d!#.
~10!

According to the definition of the string function, the dens
of particles at sitex is given by^nx(t)&5@a2Sx,x11(t)#/b
and therefore the explicit stationary density of particles re
1-2
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^nx~`!&5
a2Sx,x11~`!

b

5
1

b
$a2m@ÃLJ11g/d~2q/d!1B̃LY11g/d~2q/d!#%.

~11!

In order to solve the dynamical part of Eq.~7!, we seek a
solution of the formRx,y(t)2Rx,y(`)5(lr y,x

l e2lqt. Thus
Eq. ~7!, for 1<x,y,L gives rise to the following differ-
ence equation: r y21,x

l 1r y11,x
l 1r y,x21

l 1r y,x11
l 52$@g1(y

2x)d#/q2l%r y,x
l . With the notationE[(ql2g)/d, this

equation admitsr y,x
l 5AJy2x2E(2q/d)1BYy2x2E(2q/d) as

a solution, whereA, B, and the spectrum$Ei% are deter-
mined from the boundary and the initial conditions. Inde
the boundary conditionsRx,x(t)51 and (d/dt)Rx,x1L(t)5
2LdRx,x1L(t) require, respectively,r x,x

l 5AJ2E(2q/d)
1BY2E(2q/d)50 and (l(ql2dL)e2lqt@AJL2E(2q/d)
1BYL2E(2q/d)#50, i.e.,

AJ2E~2q/d!1BY2E~2q/d!50,

AJL2E~2q/d!1BYL2E~2q/d!50. ~12!

The only nontrivial solution of this system~for which A
Þ0 andBÞ0) requires

JL2E~2q/d!Y2E~2q/d!2J2E~2q/d!YL2E~2q/d!50, ~13!

or equivalently in terms ofLommel function@12#,

RL21,12E~2i uqu/d!50. ~14!

Thus, the relaxation spectrum of the string-function of t
model is obtained as the zeroes of theLommel function~14!.
The latter admits (L21) zeroes which are symmetricall
distributed aroundL/2 ~which is also an eigenvalue ifL is
even! and have a degeneracyL. To obtain the complete set o
L(L21)11 eigenvalues, i.e., the relaxation spectrum
$Ei%, i 51, . . . ,L of the string-function@and not the spec
trum of theHamiltonian ~1!#, we have also to take into ac
count theeigenvalue ql5Ld, which follows directly from
the boundary condition (d/dt)Rx,x1L(t)52LdRx,x1L (t).

To our knowledge there are no explicit results on the
roes of the Lommel function of imaginary arguments. In o
der to have more explicit information on the spectrum,
use the formal analogy, first noticed by Peschelet al. @9#,
which exists between the problem under consideration
the energy spectrum of an electron in a finite on
dimensional crystal in an electric potential of strengthEn
~hereE51) @11#.

To compute explicitly$Ei%, i 51, . . . ,L, we take advan-
tage of the following eigenvalue-problem:

~E2n!Fn5V~Fn211Fn11!; ~1<n,L !,

F05FL50, ~15!

where Fn5VE@JE2n(2V)J2E(2V)2
(21)nJE(2V)Jn2E(2V)# are eigenfunctions. The eigenva
ues of Eq.~15! are obtained as the zeroes of the followi
04510
,

e

-
-
e

d
-

Lommel function: RL21,12E(2V)50 @11#. Choosing V
5 i uqu/d, the problem of determining the relaxation spectru
is reformulated as that of solving eigenvalue-problem~15!.
The latter can be recasted into the following form:MuF&&
5EuF&&, whereM is a (L21)3(L21) symmetric~in fact
anti-Hermitian! tridiagonal matrix and uF&& is a
(L21)-component column-vector:uF&&[(Fn51 F2•••

FL21)T. The general form of the matrixM is the following:

M5S 1 V 0 . . . . . . . . . 0

V 2 V 0 . . . . . . 0

0 V 3 V 0 . . . 0

0 � � � � � A

A � � � � � 0

0 . . . 0 � V ~L22! V

0 . . . . . . . . . 0 V ~L21!

D .

~16!

For small systems the (L21) distinct eigenvalues$Ei% of
Eq. 16 can be computed analytically. ForL56, we have

$Ei%5$3,36A(514V26A9124V214V4)/2%, where we
still have to take into account the additional eigenvalueql
5Ld. For larger matrices we had to proceed numerica
Our analysis~based on the spectrum of large matrices, w
L<1000), shows that the spectrum$Ei% ~and therefore
$ql%) is real and symmetric aroundL/2 which is an eigen-
value whenL is even. The other eigenvalues are not gen
ally integers, but for thecentral part of the spectrum~when
eigenvalues which are close ofL/2), the eigenvalues ap
proach integer values. This is not the case at the extrem
of the spectrum. In particular, the smallest eigenvalueE*
5minEi

$Ei% is not an integer and depends on the size of

system:E* 5eL.1. However, forL@1, eL→e` , andE* is
a constant:E* 5e`.1. For L56, we have the exact resu

eL56532A(514V21A9124V214V4)/2, with 1,eL56

,32 1
2
A81A13. This expression can be considered as

excellent approximation to systems of sizeL@1, and in par-
ticular for e` . As an illustration, for the caseG00

1053/10,
G10

1151/2, G11
1051, andG10

0051/3, with the expression above
we obtain ~analytically! eL5651.082 333 768 3. For large
systems (L510,25,40,1000), we obtain numerically~with an
accuracy of 10210): e105e255e405e100051.082 333 769 7.

Therefore, the long-time dynamics~of large systems, with
L@1) is governed by the eigenvalueE* 5eL'3

2A(514V21A9124V214V4)/2, i.e.,

ql* 5E* d1g5eLd1g

52FG00
10G10

111G11
10~2G00

102G10
11!

G00
10

1~eL21!~G00
101G11

10!G
.2G10

11

>0. ~17!

Equation~17! provides theinverse of the relaxation-timeof
the system@13#.
1-3
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With the knowledge of the spectrum$Ei%,i 51, . . . ,L, the
expression of the density at sitex reads

^nx~ t !&2^nx~`!&

5
m

b (
Ei

AEi
e2(Eid1g)t@Y12Ei

~2q/d!JL2Ei
~2q/d!

2J12Ei
~2q/d!YL2Ei

~2q/d!#. ~18!

The coefficientsAEi
are obtained from the initial condition

@in the translationally-invariant situation, whereSx,y(t)
5Sy2x(t)# according to

AEi
5 (

j ,n51

L

@N 21# i , j@Jn2Ej
~2q/d!YL2Ej

~2q/d!

2Yn2Ej
~2q/d!JL2Ej

~2q/d!#* @Sn~0!2Sn~`!#m2n,

~19!
whereN is a HermiticL3L matrix whose entries read~for
details, see Ref.@13#!:

Ni , j5 (
n51

L

~Jn2Ei
~2q/d!YL2Ei

~2q/d!2Yn2Ei
~2q/d!

3JL2Ei
~2q/d!!* ~Jn2Ej

~2q/d!YL2Ej
~2q/d!

2Yn2Ej
~2q/d!JL2Ej

~2q/d!!.
e,

m

ys
,

04510
The long-time behavior of̂nx(t)& is obtained in retaining in
Eq. ~18! only the termEi5E* .

Result ~18! can be extended to the computation
^nx(t)nx0

(0)&. To do this it suffices to takenx0
uP(0)& ~in-

stead ofuP(0)&) as the initial state in Eq.~18! and thus to
replace the coefficientsAEi

of Eq. ~19! by those computed in

considering ^$) j 5x
y21@a2bnj (0)#%nx0

(0)& instead of

Sy2x(0).
In this work we have proposed a natural generalization

the IPDF method to solve~with some restrictions on the
reaction-rates! a one-dimensional reaction-diffusion mod
which can be viewed as an epidemic model and/or a ge
alization of the voter model and that could not be solved
previous approaches.

On a finite and periodic lattice, we have obtained the
act expression of the steady state, of the dynamical par
the density, and of the noninstantaneous two-point corr
tion functions of the model under consideration, which e
hibits a massiveand real relaxation spectrum. This mean
that steady-state~11! of the system is reached exponentia
with a relaxation-time which is determined explicitly in Eq
~17!.

We thank Laurent Klinger for his computational ass
tance. The support of the Swiss National Fonds is gratef
acknowledged.
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