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We solve a one-dimensional stochastic model of interacting particles on a chain. Particles can have branch-
ing and coagulation reactions; they can also appear on an empty site and disappear spontaneously. This model,
which can be viewed as an epidemic model and/or as a generalizationvaftérenodel, is treated analytically
beyond theconventionalsolvable situations. With help of a suitably chossring function which is simply
related to the density and the noninstantaneous two-point correlation functions of the particles, exact expres-
sions of the density and of the noninstantaneous two-point correlation functions, as well as the relaxation
spectrum are obtained on a finite and periodic lattice.
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Due to their important role in the description of classical —JA) with rateI'53=T"9%. The system described above can
interacting many-particle nonequilibrium systems, reactionbe viewed as aepidemic modelwhere particles can spon-
diffusion (RD) models have been extensively investigated intaneously appear or disappear, have an offspring, and coagu-
the last decadgl,2]. In lower dimensions, they provide rel- late. It can also be viewed as a generalization of wbter
evant examples aftrongly correlatedsystems which cannot model [2], where the presence or absence of a particle is
be correctly described by mean-field-like approaches. In thig@ssociated with an opiniofyes or ng and each site is asso-
sense satisfying comprehension of RD models in lower diciated with a human being. According to the dynamics of the
mensions would requirexact solutionswhich are scarce, Model, each individual changes his opinion at a rate propor-
even in one spatial dimension. In some cases, however, ceional to the opinion of his neighbors.
tain RD models are known to be solvable. These cases can A Particle (vacancy at each of thel-lattice sites corre-
essentially be classified into four categoriég:models for ~SPoNding to spin dowr(up), the master equation of the
which the equations of motion of correlation functions aremOde!’ can be rewritten as an |m_ag|nary-t|me Sdfmger
closed[3]; (ii) thefree-fermionmodels[4] (or systems which equation for aguantum spin-chainproblem: a/at|P(_t))
can be mapped onto the latter, see REZs5]); some other =—H|P(t)), where |P(t)>=_2{n}P({n},t)|{n}) descrles
(one-dimensionalRD models can be solved by tfi@ ) Ma- the gtate Qf the syste_m at timg(the sum runs over the"2
trix Ansatzmethod[6], and some others biv) the interpar- cHonﬁg_qratmni; and H dls_the stoch%]astm Hamﬂtor_nar(nc;r_]'-
ticle distribution function(IPDF) method[7-9], first intro- _eEranmsr) exprgrs‘se In & spip- representation &
duced for the study of the diffusion-coagulation motetd ~~ ~i=1 1.i+L wit
its variantg. It has also to be mentioned that the solutions of
various one-dimensional RD models have been obtained-H; j+1=T3{(1-n;.1) (o —n))
from the diffusion-coagulation models viimilarity trans-
formations[2,10]. It hasgbeen established that theylatter solv- +(1=n)(osr =N} + Foof(1=n;.1)

able situations correspond fee-fermionsystemg 2]. X (o +nj=1)+(1—n) (0], +Nnj+1— 1)}
The purpose of this Rapid Communication is to present a
generalization of the IPDF method and to apply this tech- +T3AN (o =Ny D) +0j (o] —np}
nique to solve a one-dimensional stochastic model which is 1 B B
not solvable usingonventionalmethods. The model under +lginj 11l +nj— L) +nj(oj 01— D)},
consideration exhibits anassivespectrum, implying arex- (1)
ponential approachtowards the steady state. The expres-
sions of the density and noninstantaneous correlation func- . ) ) N
tions are determined. where thes~ are the usual Pauli matrices amg=3;(1
Consider a periodic lattice df sites on whichclassical ~ —¢7) is the density operator at sije We also define the

particles interact. Each site is either emgtienoted by the  “left vacuum” (}lEE{n}<{n}|. The probability conservation
symbol) or occupied by a particle at most, say, of specie%,iekjs (;(|H =0.
A (hard-core interaction When a particle and a vacancy are *  For the model under consideration, the equation of evolu-

adjacent to (_each other,. b{an_ching reactioncgn take place  tion of the density, from an initial sta{é(0)), is therefore
and the particle\ can give birth to an offspring @ — AA

and JA— AA) with rate I'7§=T"33; another possible reac-

. . . d ~

tion is the death of the particle AD— and JA —(n)=—Ini(H 1 +H e "P(0)

— @) with rate [99=T39. When two particles are adja- gt =~ (Hya IPC0))

cent, they caroagulate{ AA— A andAA— JA) with rate —2ALB(N: LN (n. —2¢(n:
I'19=r9% In addition, when two vacancies are adjacent, a ((j+0) +{Nj-1)) (n;)

particle can appearbirth process, @@ —AZ and JJ +D((njnj41)+(Njnj_1)), (2
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where A=T39, B=T11-1% c=r%+ri% andD=r%  According to Eq(4) and with rateg5), for the model under
+T35—(T15+T19). WhenD=0 andB#C, for a transla- consideration on a periodic lattice tf sites, we have (1
tionally invariant system with initial density of particles <X<Y<L):
(n;(0))=p(0), thesolution of Eq.(2) simply reads(n;(t)) d o B
=A/{C—B}+[p(0)—(A/{C—B})]e > "B However, 31 Sev (D=5 (Sce1y(D+ Scy-1(1)+ 5 (S (1)
when D#0, it is clear from Eq.(2) that the equation of
motion of the correlation functions of the model give rise to + Sy +1(1) = ¥Sey (1) = (Y—X) 5S, (1)
an open hierarchf3,2], which is not, in general, solvable. In ’ ’ '
addition, Hamiltoniar(1) is not quadratic and cannot, in gen- (1sx<y<l),
eral (excepted whem'15=T1%5 andT'12=T3J, see Ref[2] g
for a complete classification dfee-fermionsystemsg be - - _
casted intg a free-fermion form. Furthermo¥e, this model gt et (D= 7L 0Sea (L), ©
cannot be solved by thiaditional IPDF method, which is
not applicable[7-9] in the presence of the process&g’ Scx(t)=1,
-0, SA—-D and in the absence of processé®)  where a=2(aC—bA), =—2D/b, y=2(B+C)— 4, and
—JA; GA—AQ (the latter should occur with the same §=(2b/a)A>0. The prescriptior§, ,(t)=1 is obtained re-
rate as the coagulation ratgs-9]). quiring thatS, ,, 1(t)=a—b(n,(t)) and using Eq(2).

To our knowledge, nexact result$iave been obtained for  The subcasé';5=I"33 implies a=8=B=D=0 and we
the model under investigation beyond tbe=0 andfree- recover C+#0) (ny(t))=[a—S,x+1(t)]/b=AIC
fermioncases. In order to obtain the exact expression of the- ({(n,(0))—A/C)e 2",

density beyond the lattezonventional casesve generalize Hereafter we focus on the more general situation where
the IPDF method introducing the followingtring function  Egs.(5) are fulfilled with '13# '35, and thusa#0,8#0 .
(L=y=x=1): It is useful to consider theuxiliary function R, ,(t)
=u VS, (1), where we introduce the complex numbers
S.y(t)=((a—bny(a—bn,y) ...(a=bny_1))(1), w=—isgn(@)|a/B|¥? andq=i|aB|Y?+0. Notice that, be-

cause of Eqs(5), 0<|q|/§<1/2. With help of Eqs(5), we

wherea and b are nonvanishing numbers. Wha=b=1, obtain the equation of motion G2 (1),

S.y(t) is theempty interval functiorused in thetraditional d q

IPDF method 7-9]. The idea to solve the model under con-  gRxy(V=75 e;ﬂ { Rt ey(D)+ Ry y+el) = ¥Ry (1)
sideration here(with certain restrictions for the reaction -

rates is to choosesuitablea andb in order to have a closed —(Y=X) IRy y(1); (Ils=x<y<L),
equation of evolution fo5, \(t). This is achieved by impos-

ing the following ratio betweera andb: d
J J R L (D=~ L8R, (1), @)
b 1
5:14— ﬁ)>1 (4) Rx,x(t):l-

00
The stationary solution of Eq7) is obtained with the Ansatz

and for the following reaction rates: Rx,y(oo)ZALJy—x+w(2q/5)+~BLYy—x+w(2q/5), Where

F%22F21>0; 21“%,8= 21“8%21“%:1“3}20; J,(z) andY,(z) are the usugl Bess~el functions of first and
second kind, respectively, ag andB, are constants to be
rideris-ril determined. Inserting the expressionff () into Eq.(7),
and I'p=Ii=———5——=0. (5  we obtainw= /. Taking into account the boundary condi-
I'5o tions Ry (1) =Ry () =1 andR, ,,  (*) =0, we get
|
A__ Vit ys(2019) ®
- I+ 620/ 6)Y 1,5(20/ 6) =Y 1 115(20/ 8)J,,,5(20/ 6)
|
5 _ Ju+y15(20/9) Sy (%)= ALy 515(20/ 8) + BLY 5201 5)].
LI 6(2018)Y 1 5(2018) = Y+ 5(2018)J,5(20/ )’ (10)

According to the definition of the string function, the density
which provides the stationary expression for the string funcof particles at sitex is given by(n,(t))=[a—S, 4+ 1(t)1/b
tion: and therefore the explicit stationary density of particles reads
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Lommel function R _;;_g(2V)=0 [11]. Choosing V
=i|qg|/ 8, the problem of determining the relaxation spectrum
is reformulated as that of solving eigenvalue-problgif).
The latter can be recasted into the following fort| 7))
=E|F)), whereM is a (L—1)X(L—1) symmetric(in fact
anti-Hermitian  tridiagonal matrix and |F)) is a
(L—1)-component column-vector:| F))=(F -1 Fy---
F__1)". The general form of the matri#1 is the following:

(nx(oo)>= a_sx,;+l(oo)

1 ~ ~
= B{a_ M[ALI1+ 5150201 8) +BLY 11,520/ )]}
(11

In order to solve the dynamical part of E(f), we seek a

solution of the formR, (t) — Ry () = =,r} e 9" Thus 1 v o0 ... ... .. 0
Eq. (7), for 1=x<y<L gives rise to the following differ- \VAR) \V; o ... oL 0
ence equatiop:r§,lzx+r§+lyx+ r§,5—1+_r§,x+1:2{[7+(}’ oV 3 Vv o o 0
—X)é}lq—A}ry,. With the notationE=(q\ —y)/d, this

M=| 0

equation admits}, = AJ, _,_£(20/8) + BY,_,_g(20/5) as
a solution, whered, B, and the spectru{E;} are deter- e e e 0
mined from the boundary and the initial conditions. Indeed,

the boundary condition®, (t)=1 and @/dt)R, ., (t)= o ... 0 Vo L=2) Vv
—L&Ryx+(t) require, respectively,ry,=.AJ_g(2q/5) 0 0 Voo (L-1)
+BY_g(2q9/8)=0 and =,(gh—L)e MU AJ, _=(2q/9) (16)

+BYL—E(2q/5)]:OI i.e.,
AJ_£(29/6)+BY _g(2q9/6)=0,

For small systems the l{—1) distinct eigenvalue$E;} of
Eqg. 16 can be computed analytically. Fbr=6, we have
(E} =133 V(5+4V2= 9+ 24/ + 4V%)/2}, where we
still have to take into account the additional eigenvaipe
=L 4. For larger matrices we had to proceed numerically.

AJ, _e(2q/8)+BY_ _g(29/68)=0. (12
The only nontrivial solution of this systertfor which A

#0 andB#0) requires
Ji-e(20/6)Y_e(20/6) —J-e(20/0) Y -g(20/6)=0, (13
or equivalently in terms oEommel functiorf12],

(14

Our analysigbased on the spectrum of large matrices, with
L=<1000), shows that the spectrufiE;} (and therefore
{g\}) is real and symmetric arountl/2 which is an eigen-
value whenL is even. The other eigenvalues are not gener-
ally integers, but for theentral part of the spectruniwhen
eigenvalues which are close &fl2), the eigenvalues ap-

Ri-11-£(2i|al/8)=0. ' los -
proach integer values. This is not the case at the extremities

Thus, the relaxation spectrum of the string-function of theof the spectrum. In particular, the smallest eigenvatife
model is obtained as the zeroes of thmmmel functior(14). zminEi{Ei} is not an integer and depends on the size of the

The latter admits I( —1) zeroes which are symmetrically systemE* = ¢, >1. However, folL>1, ¢, —e,,, andE* is
distributed around./2 (which is also an eigenvalue if is const.antE*L=e ~1 ForL=6. we 'habe the exact result

even and have a degeneratyTo obtain the complete set of )
€ -6=3— \/(5+4v2+ VO+24V2+4VH2, with 1<e _g

L(L—1)+1 eigenvalues i.e., the relaxation spectrum
<3—1V8+/13. This expression can be considered as an

{E}, i=1,... L of the string-function[and not the spec-
trum of theHamiltonian (1)], we have also to take into ac- excellent approximation to systems of size-1, and in par-
ticular for e,. As an illustration, for the cas&go=3/10,

count theeigenvalue @ =L &, which follows directly from

the boundary conditiond/dt) Ry x+1 (t) = — L8Ry x+L (1). I'it=1/2,119=1, and'%)=1/3, with the expression above,
To our knowledge there are no explicit results on the zeye gbtain (analytically €, _g=1.0823337683. For larger

roes of the Lommel function of imaginary arguments. In or-systems | = 10,25,40,1000), we obtain numericaflyith an

der to have more explicit information on the spectrum, Weaccyracy of 1019): €,5= €5= €40= €100= 1.082 333 769 7.

use the formal analogy, first noticed by Peschedl. [9], Therefore, the long-time dynamiésf large systems, with
which exists between the problem under consideration ang>1) is governed by the eigenvalueE* =e ~3

the energy spectrum of an electron in a finite one- \/ > > 7 .
dimensional crystal in an electric potential of strengin (5+4Vi+\9+24V7+4VT)I2, ie.,
(here&=1) [11].

To compute explicith{E;}, i=1,... L, we take advan-
tage of the following eigenvalue-problem:

gAY =E* o+ y=€ 5+

Tool 19+ 132056~ ')

-2 — +(e—D(Ig0+T1D)
(E-n)F,=V(F,_1+Fn1); (1=n<L), 50
11
Fo=F. =0, (15 =2l
=0. (17)

where Fr=VFJIe_n(2V)I_g(2V)—
(—1)"Ie(2V)J,_e(2V)] are eigenfunctions. The eigenval- Equation(17) provides theinverse of the relaxation-timef
ues of Eq.(15) are obtained as the zeroes of the following the systenj13].
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With the knowledge of the spectrufk;},i=1,... L,the  The long-time behavior ofn,(t)) is obtained in retaining in

expression of the density at sitereads Eq. (18) only the termE;=E*.
Result (18) can be extended to the computation of
(Nx(1)) = (Ny(>2)) (n,(t)n(0)). To do this it suffices to take, |P(0)) (in-

o (B8t stead of|P(0))) as the initial state in Eq18) and thus to
b % Ag e Y- (20/0)J - (201 9) replace the coefficientdg. of Eq. (19) by those computed in
considering ({H}’;Xl[a—bnj(O)]}nxo(O» instead  of
S, «(0).

In this work we have proposed a natural generalization of
the IPDF method to solvéwith some restrictions on the
reaction-rates a one-dimensional reaction-diffusion model
which can be viewed as an epidemic model and/or a gener-

_ 1 alization of the voter model and that could not be solved b
Ag= 2 [N 10 (20/0)Y0 g (20/9) DroVIOUS ApPIOACHES. y
N n On a finite and periodic lattice, we have obtained the ex-
_Yn*Ej(qu)JL*Ej(zqm)] [Sn(0)=Sn(>) Ju ™™, act expression of the steady state, of the dynamical part of

(190  the density, and of the noninstantaneous two-point correla-
tion functions of the model under consideration, which ex-

—J1-g,(20/6)Y g (20/5)]. (18

The coe1‘ficientsAEi are obtained from the initial condition

[in the translationally-invariant situation, wherg, ,(t)
=S, «(t)] according to
L

J.n=

whereV is a HermiticL X L matrix whose entries reador

details, see Ref13)): hibits a massiveand real relaxation spectrum. This means
L that steady-statéll) of the system is reached exponentially
N j= > (Ih-e(20/8)Y _£(20/8)—Y,_g (2q/8) with a relaxation-time which is determined explicitly in Eq.
! n=1 I I 1 (17)
XL g (2018)* (In-g,(20/6) Y —g,(20/ 6) We thank Laurent Klinger for his computational assis-
tance. The support of the Swiss National Fonds is gratefully

—Yn-g,(20/6)JLg(20/5)). acknowledged.

[1] Nonequilibrium Statistical Mechanics in One Dimensieq- [6] B. Derrida, E. Domany, and D. Mukamel, J. Stat. Ph§43.
ited by V. Privman(Cambridge University Press, Cambridge, 667 (1993; B. Derrida and M.R. Evans, J. Phys.3] 311

England, 199¥% J. Marro and R. DickmanNonequilibrium (1993; B. Derrida, M.R. Evans, V. Hakim, and V. Pasquier, J.
Phase Transitions in Lattice Model&ambridge University Phys. A26, 1493(1993; G.M. Schuz and E. Domany, J. Stat.
Press, Cambridge, England, 1998. Chopard and M. Droz, Phys.72, 277 (1993; B. Derrida, Phys. Ref801, 65 (1998.
Cellular Automata Modelling of Physical Systet@ambridge  [7] C.R. Doering and D. ben-Avraham, Phys. Rev.38 3055
University Press, Cambridge, England, 1998.C. Mattis and (1988; M.A. Burschka, C.R. Doering, and D. ben-Avraham,
M.L. Glasser, Rev. Mod. PhyJ0, 979(1998. Phys. Rev. Lett62, 2563(1989; D. ben-Avraham, M.A. Bur-

schka, and C.R. Doering, J. Stat. Phg§, 695 (1990; C.R.
Doering, M.A. Burschka, and W. Horsthemkigjd. 65, 953
(1992); D. ben-Avraham, inNonequilibrium Statistical Me-
chanics in One Dimensigredited by V. Privmar{Cambridge
University Press, Cambridge, England, 199Chap. 2.

[8] K. Krebs, M.P. Pfannmiler, B. Wehefritz, and H. Hinrichsen,

[2] G.M. Schiiz, Exactly Solvable Models for Many-Body Systems
Far From Equilibrium Vol. 19 of Phase Transitions and
Critical Phenomengaedited by C. Domb and J. LebowifAca-
demic Press, London, 200

[3] G.M. Schiiz, J. Stat. Phys79, 243 (1995; Y. Fujii and M.

Wadati, J. Phys. Soc. Jp66, 3770(199%; M. Mobilia and J. Stat. Phys78, 1429(1995; H. Hinrichsen, K. Krebs, and I.
P.-A. Bares, Phys. Rev. &3, 036121(2003. Peschel, Z. Phys. B: Condens. Mat&0, 105 (1996.

[4] M.D. Grynberg, T.J. Newman, and R.B. Stinchcombe, Phys. 91| peschel, V. Rittenberg, and U. Schultze, Nucl. Instrum.
Rev. E50, 957(1994; M.D. Grynberg and R.B. Stinchcombe, Methods Phys. Res. B30, 633 (1994

Phy__s. Rev. Lett.74, 1242 (1999; 76, 851 (1996; G.M. [10] H. Simon, J. Phys. /28, 6585(1995.
Schuz, J. Phys. A28, 3405(1999; Phys. Rev. E53, 1475  [11] G.C. Stey and G. Gusman, J. Phys5,®50(1973; M. Saitoh,

(1996; P.-A. Bares and M. Mobiliaipid. 59, 1996(1999; M. ibid. 6, 3255(1973.

Mobilia and P.-A. Baresibid. 63, 056112(2002). [12] G.N. Watson,A Treatise on the Theory of Bessel Functions
[5] M. Henkel, E. Orlandini, and J. Santos, Ann. Phy$.Y.) 259 (Cambridge University Press, Cambridge, England, 1952

163(1997). [13] M. Mobilia and P.-A. Bares, e-print cond-mat/0107286.

045101-4



